

C. U. SHAH UNIVERSITY WADHWAN CITY FACULTY OF SCIENCES

M.Sc.

CHEMISTRY SEM-III

Syllabi (CBCS) of M.Sc. Chemistry WEF June-2016 (Specialization: Analytical Chemistry)

FACULTY OF SCIENCES

DEPARTMENT OF CHEMISTRY

COURSE: M.Sc. SEMESTER: III SUBJECT NAME: Industrial Analytical Chemistry SUBJECT CODE: 5SC03IAC1

Teaching & Evaluation Scheme:-

Teaching hours/week						Evaluation Scheme/semester						
				Theory								
Th	Tu	Pr	Total	Credit	Sessio Exar	-	Univer Exan	•	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr TW			
4	0	0	4	4	30	1.5	70	3				100

Objectives:-

- Understand disconnection concept of industrial analytical chemistry
- Introduction to food analysis, Pharmaceutical Analysis

Prerequisites:-

 Before studying industrial analytical chemistry, all students have basic knowledge of analytical chemistry and knowledge related to UG level chemistry.

Sr.	Course Contents
No.	
1	Automation in Measurements
	Principles of automation, automatic and automated devices, Process control: off-line, at-
	line and on-line analysis. Continuous and discrete analyzers, feedback mechanism. Flow
	injection analysis, principles, dispersion coefficient, factors affecting peak height-sample
	volume, channel length, flow rate and channel geometry. Applications of FIA, stopped
	flow measurements and gradient FIA.
2	Food Analysis
	Introduction to food analysis, regulations and international standards related to food
	analysis, nutritional labelling, sample and sample preparation. Adulteration of fats and oils; milk and milk products.

3 Pharmaceutical Analysis

Instrumental and titrimetric assays for anti-diabetic, anti-cancer, anti-tuberculosis, anti-malarial, anti-hypertensive and anti-HIV drugs based on USP/BP/IP. Heavy metal ion analysis in pharmaceuticals. Importance of UV-Visible spectrophotometry, IR spectroscopy and HPLC with UV, fluorescence and photodiode array detection in pharmaceutical industry.

Analysis of pesticides, soaps and detergents, fertilizers: Classification of pesticides. Analysis of different pesticides by classical and instrumental methods. Classification of soaps and detergents with suitable examples. Characterization of soaps and detergents. Types of fertilizers and analysis of different elements like, nitrogen, phosphates, calcium, sodium, potassium and ammonia.

Learning Outcomes:-

After the successful completion of the course, students will be able to understand,

- Analysis of pesticides, soaps and detergents, fertilizers etc
- Instrumental and titrimetric assays for drugs.

Books Recommended:-

- 1. 'Designing organic synthesis', S. Warren, Wiley.
- 2. "Analytical Chemistry" by Gary D. Christian, John Wiley
- 3. "Principles of Instrumental Analysis" by Douglas A. Skoog, Holt-Saunders International
- **4.** "Flow injection analysis of pharmaceuticals: automation in the laboratory" by **Jose Martinez Calatayud**, *Taylor and Francis*.
- 5. "Food Analysis" by S. Suzanne Nielsen, Springer
- **6.** "Food Analysis Laboratory Manual" by **S. Suzanne Nielsen**, *Springer*.
- **7.** "Quantitative Analysis of Drugs in Pharmaceutical Formulation", **P.D. Sethi**, CBS Publishers,
- 8. "Handbook of Modern Pharmaceutical Analysis" by Satinder Ahuja, Academic Press,

- http://sine.ni.com/nips/cds/view/p/lang/en/nid/1380
- http://en.wikipedia.org/wiki/Association for Standardisation of Automation and Measuring Systems
- http://people.umass.edu/mcclemen/581Toppage.html
- http://pharmaalysis.blogspot.in/
- http://en.wikipedia.org/wiki/Pesticide

COURSE: M.Sc. SEMESTER: III

SUBJECT NAME: Qualitative Optical Spectroscopic Method-I

SUBJECT CODE: 5SC03QSC1
Teaching & Evaluation Scheme:-

Teaching hours/week							Evalu	uation S	cheme/	semest	er	
				Theory								
Th	Tu	Pr	Total	Credit	Sessional University Internal Exam		University	Total Marks				
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-

- To understand analytical chemistry.
- To learn theories, instrumentation and principles of Spectroscopy.

Prerequisites:-

 Before studying Analytical Chemistry, all students have basic knowledge of instrumentation, applications and knowledge related to UG level chemistry.

Sr.	Course Contents							
No.								
1	Infrared Spectroscopy							
	• Introduction							
	IR Frequency Range and Spectrum Presentation							
	Theory of Infrared Absorption							
	Dispersive Spectrometers							
	Fourier Transform Spectrometers							
	Hyphenated Methods Involving Infrared							
	Analytical Information : Qualitative and Quantitative							
	Applications							

2 Raman Spectroscopy

- Introduction
- Dispersive Spectrophotometers
- Fourier Transform Spectrometers
- Normal Raman
- Resonance Raman
- FT Raman
- Surface enhanced Raman Spectroscopy (SERS)
- Raman Microprobe
- Remote Raman Analysis
- Raman Depolarization Ratios
- Analytical Information
- Applications

3 Nuclear Magnetic Resonance Spectroscopy

- Introduction
- Physical and Chemical Principles
- Instrumentation
- Analytical Information : Qualitative and Quantitative
- Applications

4 X – Ray Diffraction

- Introduction
- Single Crystal Diffraction
- Powder Diffraction
- Analytical Information : Qualitative and Quantitative
- Applications

Learning Outcomes:-

After the successful completion of the course, students will be able to understand,

- Spectroscopic techniques and analysis.
- NMR, FTIR, X-Ray diffraction and Raman Spectroscopy

Books Recommended:-

- **1.** "Handbook of Instrumental Techniques for Analytical Chemistry", **Frank Settle**, *Prentice Hall PTR*,
- 2. "Applied Infrared Spectroscopy", Smith A L, published by Wiley,
- 3. "Instrumental Methods of Analysis", Willard H H, Belmont, CA: Wadsworth,
- **4.** "Raman Spectroscopy", **Long D A**, *McGraw Hill*.
- 5. 'Laboratory Raman Spectroscopy", Strommen D P, Nakamoto N, Wiley,
- 6. "Spectrometric Identification of Organic Compounds", Silverstein R M, Bassler G C, Wiley,
- 7. "Introduction to NMR Spectroscopy", Abraham R J, Fisher J, Loftus P, Wiley.
- 8. "Elements of X Ray Crystallography", Azaroff L V, McGraw Hill.

- http://en.wikipedia.org/wiki/analyticalchemistry
- http://pubs.acs.org/journal/jmcmar
- http://benthamscience.com/journal/index.php?journalID=mc
- http://omicsonline.org/analyticalchemistry.php
- http://www.e-booksdirectory.com/details.php?ebook=7521
- http://books.google.co.in/books/about/analyticalChemistry.html?id=C9qtuHZcrYEC&redir esc=y

COURSE: M.Sc. SEMESTER: III SUBJECT NAME: Electroanalytical Techniques SUBJECT CODE: 5SC03ETC1

Teaching & Evaluation Scheme:-

Teaching hours/week						Evalu	ation S	cheme/	semest	er		
				Theory								
Th	Tu	Pr	Total	Credit	Sessio Exar		Univer Exar	•	Inte	rnal	University	Total Marks
					Marks	Hrs	Marks	Hrs	Pr TW			
4	0	0	4	4	30	1.5	70	3				100

Objectives:-

- To understand analytical chemistry and applications.
- To learn theories and principles of Electroanalytical Techniques.
- To create interest in students in learning Electroanalytical Techniques.

Prerequisites:-

 Before studying Electroanalytical Techniques, all students have basic knowledge of analytical chemistry, electronics and knowledge related to UG level chemistry.

Sr.	Course Contents							
No.								
1	Electroanalytical Measurements							
	Voltage.							
	Impedance.							
	The electric double layer.							
	Electrocapillarity.							
	Current.							
	Diffusion transport.							

2 Voltammetry

- Differential pulse polarography.
- Square wave polarography.
- A.C. polarography.
- Stripping analysis.
- Cycling voltametry.
- Amperometric titration.

3 Electrodeposition and Coulometry

- Electrolysis.
- Current-Voltage relation.
- Electrogravimetric analysis at constant current, constant potential and at controlled potential.
- Coulometric analysis.

4 Electrochemical and Bio-sensors

- Potentiometric sensors.
- Potentiometric biosensors.
- Amperometric sensors.
- Conductometric sensors.
- Applications of Field-Effect Transistors sensors.

Learning Outcomes:-

After the successful completion of the course, students will be able to understand,

- Organic biosensor, Electro deposition method.
- Potentiometric sensors, Potentiometric biosensors, Amperometric sensors.

Books Recommended:-

- 1. "Laboratory Techniques in Electroanalytical Chemistry", Peter T. Kissinger, William R. Heineman Marcel Dekker Inc.,
- 2. "Electroanalytical Chemistry", Basil H. Vassos, Galen W. Ewing, John Wiley & Sons.
- **3.** "Electrochemical Methods Fundamentals and Applications", **Allen J. Bard, Larry R. Faulkner**, *John Wiley & Sons*.
- **4.** "Quantitative Chemical Analysis" **Daniel C. Harris**, W.H. Freeman and Company.
- 5. "Treatise on Analytical Chemistry", I.M. Kolthoff, Wiley-Interscience.

- http://en.wikipedia.org/wiki/Electroanalytical method
- http://en.wikipedia.org/wiki/Voltammetry
- http://en.wikipedia.org/wiki/Cyclic voltammetry
- http://pubs.acs.org/doi/abs/10.1021/ed042pA261

COURSE: M.Sc. SEMESTER: III SUBJECT NAME: Modern Separation Techniques SUBJECT CODE: 5SC03MSC1

Teaching & Evaluation Scheme:-

Teaching hours/week				Evaluation Scheme/semester								
		Theory		ory	ory Practical							
Th	Tu	Pr	Total	Credit	Credit Sessional University Exam Exam		Internal University			Total Marks		
					Marks	Hrs	Marks	Hrs	Pr	TW		
4	0	0	4	4	30	1.5	70	3				100

Objectives:-

- To learn about advance Analytical chemistry and their applications.
- To understand Principal and instrumentation.
- Aware about separation techniques.

Prerequisites:-

• Before studying advance chemistry, all students have basic knowledge of basic chemistry, Chromatography and knowledge related to UG level chemistry.

Sr.	Course Contents							
No.								
1	Liquid Chromatography							
	Principle, theory, instrumentation and applications of high-performance liquid							
	chromatography. LC-MS, preparative chromatography, chiral chromatography, ion-							
	chromatography, ion-pair chromatography, size-exclusion/gel permeation							
	chromatography and affinity chromatography.							
2	Gas Chromatography							
	GC principle, theory, columns, detector types and applications in pharmaceutical							
	analysis. Head space gas chromatography; Pyrolysis gas chromatography; GC-MS.							

3 Electrophoresis

Principles of electrophoresis, theory and applications of polyacrylamide gel electrophoresis, capillary zone electrophoresis, micellar electrokinetic electrophoresis, capillary electrochromatography and capillary gel electrophoresis. Isoelectric focusing.

4 Specialized chromatographic techniques

Principle, separation process on special columns, instrumentation and applications of counter current chromatography and ice chromatography. Superheated water chromatography- A green approach for the future. Flash chromatography.

Learning Outcomes:-

After the successful completion of the course, students will be able to understand,

- Chromatographic techniques
- Principle, theory, instrumentation and applications of Chromatography.

Books Recommended:-

- 1. "Quantitative Chemical Analysis" by Daniel C. Harris, W.H. Freeman and Company
- 2. "Analytical Chemistry" by Gary D. Christian, John Wiley and Sons Inc..
- **3.** "Chiral Separation Techniques: A Practical Approach", by **Ganapathy Subramanian**, *Wiley-VCH*.
- 4. "Chiral Separations by Chromatography" by Satinder Ahuja, American Chemical Society.
- 5. "Chiral Chromatography" by Thomas E. Beesley, John Wiley and Sons,
- **6.** "A Practical handbook of preparative HPLC" by **Donald Wellings,** *Elsevier*.
- 7. "Advances in Electrophoresis" by Andreas Chrembach, Wiley-VCH,
- **8.** "High Performance Capillary Electrophoresis: An Introduction" by **David N. Heiger**. *Hewlett Packard GmbH*.
- 9. "High-speed counter current chromatography" by Yoichiro Ito, John Wiley and Sons,
- **10.** "Practical Aspects of Gas Chromatography/Mass Spectroscopy" **by Gordon M. Message**, *John Wiley & Sons*.

- 1. http://en.wikipedia.org/wiki/Liquid chromatography%E2%80%93mass spectrometry
- 2. http://en.wikipedia.org/wiki/Electrophoresis
- 3. http://iopscience.iop.org/0957-4484
- 4. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1522-2683
- 5. http://en.wikipedia.org/wiki/Chemical industry
- 6. http://chemistry.uonbi.ac.ke/degree courses/837

COURSE: M.Sc. SEMESTER: III SUBJECT NAME: Chemistry Practical - III SUBJECT CODE: 5SC03PRA1

Teaching & Evaluation Scheme:-

Ī	Teaching hours/week							Evalu	ation S	cheme/	semest	er	
							The	Theory			Prac	tical	
	Th	Tu	Pr	Total	Credit	Sessional Exam		University Exam		Internal		University	Total Marks
						Marks	Hrs	Marks	Hrs	Pr	TW		
	0	0	12	12	6					30	20	150	200

Objectives:-

- To understand organic compounds and identification of their functional group.
- To learn practical principles related to drug synthesis, organic separation and preparation of dyes
- To create interest in students in learning basic chemistry.

Prerequisites:-

 Before studying practical of chemistry, all students have basic knowledge of organic and organic compounds, properties, medicinal chemistry, drugs and knowledge related to PG level chemistry.

Sr.	Course Contents
No.	
1	1. pKa determination of drugs by spectrophotometry
	2. Characterisation of drugs substance by IR.
	3. Flame Photometry and Atomic Absorption Spectrophotometry.
	4. Simultaneous determination of metal ions by spectrophotometry.
	5. Solvent extraction of transition metal ions
	6. Ion-exchange separation of cations and anions
	7. Fluorimetric determination of vitamins and drugs
	8. Method validation for linearity, accuracy and precision.
	9. Characterization of drug substances by IR Spectroscopy.
	10. High performance liquid chromatography.
	11. Gas chromatography.

Learning outcomes:-

After the successful completion of the course, students will be able to,

- Understand basic principal of chemistry practical's
- Understand drug and dyes synthesis.

Books for References:

- 1. 'Textbook of practical chemistry', Vogel.
- 2. 'Practical chemistry', Pandey.
- 3. 'Practical in Analytical chemistry', **Dr. Ramesh K. Goyel**, *B.S. Shah Prakashan*.

- 1. http://en.wikipedia.org/wiki/Chromatography
- 2. http://www.rpi.edu/dept/chem-eng/Biotech-Environ/CHROMO/chromintro.html
- 3. http://en.wikipedia.org/wiki/High-performance-liquid-chromatography
- **4.** http://www.chem.ucla.edu/~bacher/General/30BL/gc/theory.html